On conformal Jordan cells of finite and infinite rank
نویسنده
چکیده
This work concerns in part the construction of conformal Jordan cells of infinite rank and their reductions to conformal Jordan cells of finite rank. It is also discussed how a procedure similar to Lie algebra contractions may reduce a conformal Jordan cell of finite rank to one of lower rank. A conformal Jordan cell of rank one corresponds to a primary field. This offers a picture in which any finite conformal Jordan cell of a given conformal weight may be obtained from a universal covering cell of the same weight but infinite rank.
منابع مشابه
Jordan cells in logarithmic limits of conformal field theory
It is discussed how a limiting procedure of conformal field theories may result in logarithmic conformal field theories with Jordan cells of arbitrary rank. This extends our work on rank-two Jordan cells. We also consider the limits of certain three-point functions and find that they are compatible with known results. The general construction is illustrated by logarithmic limits of minimal mode...
متن کامل2 4 N ov 1 99 9 Simple Conformal Superalgebras of Finite Growth
In this paper, we construct six families of infinite simple conformal superalgebra of finite growth based on our earlier work on constructing vertex operator superalgebras from graded assocaitive algebras. Three subfamilies of these conformal superalgebras are generated by simple Jordan algebras of types A, B and C in a certain sense.
متن کاملInfinite-dimensional versions of the primary, cyclic and Jordan decompositions
The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.
متن کاملPrimal-dual algorithms and infinite-dimensional Jordan algebras of finite rank
We consider primal-dual algorithms for certain types of infinite-dimensional optimization problems. Our approach is based on the generalization of the technique of finite-dimensional Euclidean Jordan algebras to the case of infinite-dimensional JB-algebras of finite rank. This generalization enables us to develop polynomial-time primal-dual algorithms for “infinite-dimensional second-order cone...
متن کاملAddendum to: "Infinite-dimensional versions of the primary, cyclic and Jordan decompositions", by M. Radjabalipour
In his paper mentioned in the title, which appears in the same issue of this journal, Mehdi Radjabalipour derives the cyclic decomposition of an algebraic linear transformation. A more general structure theory for linear transformations appears in Irving Kaplansky's lovely 1954 book on infinite abelian groups. We present a translation of Kaplansky's results for abelian groups into the terminolo...
متن کامل